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The operator method of the approximate description of the 
quantum and classical systems 

I D Feranchuk and L I Komarov 
Department of Physics, Byelorussion State University, Minsk-80, USSR 

Received 12 March 1984 

Abstract. Systematic theory of the operator method (OM) of the approximate solution of 
the Schrodinger equation is considered. The eigenfunctions and eigenvalues for various 
one- and many-dimensional systems are calculated and the arguments of the convergence 
of the OM perturbation series are discussed. It is also shown that OM permits us to develop 
the absolute convergent approximation in the theory of nonlinear oscillations of the classical 
systems. 

1. Introduction 

At present the interest in the construction of non-perturbation methods of description 
of the quantum systems is increasing. One of such methods called the operator method 
(OM) was recently introduced by Feranchuk and Komarov (1982a) on the quartic 
anharmonic oscillator (QAO) example. Fernandez and Castro (1982) found the simple 
model system where one could essentially increase the radius of convergence of the 
OM approximation series in comparison with the perturbation theory series. Gerry 
and Silverman (1983) connected the OM with the group characteristics of the annihila- 
tion and creation operators. Feranchuk and Komarov (1982b) and Witschel (1983) 
used the OM for systems with infinite number of degrees of freedom and recently 
Yamazaki (1984) described in detail the same results for QAO which we found earlier 
(Feranchuk and Komarov 1982a). 

The main merit of the OM in the QAO problem is that even in zeroth approximation 
it gives very simple but sufficiently precise estimation for eigenvalues and eigenfunctions 
of the ground and excited states in the whole range of the anharmonicity constant A. 
The high-order approximations of the OM are calculated by means of the regular 
procedure and they give the series which doesn’t contain any small algebraic parameter 
and is rapidly convergent for all A. Such a situation is very unusual in physical problems 
and therefore the analysis of the reasons for OM convergence is of great interest. Also, 
it is very important to ascertain what is the generality of the results obtained in the 
partial problem of the QAO. These questions are considered in the present work. 

Our paper has the following structure. Modifications of the OM which enable us 
to improve its convergence and to find a singular point of an energy spectrum are 
considered in § 2. It is also shown in this section that the OM permits one to calculate 
the continuous spectrum wavefunctions. The questions connected with the OM conver- 
gence are discussed in § 3 using the example of the QAO problem. Specifically, it is 
shown that the series obtained in this problem on the basis of the OM is absolutely 
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31 12 I D Feranchuk and L I Komarov 

convergent while the perturbation theory series is asymptotic and its radius of conver- 
gence is equal to zero. The OM series proves to be rapidly convergent if the special 
parameter is chosen in an optimal way. The systems with additional integral of motion 
are considered in § 4. As we will see below, the OM permits one to calculate the energy 
levels of such systems by means of sufficiently simple formulae but with high accuracy. 

Next we develop a new method in the theory of nonlinear oscillations of classical 
systems on the basis of the OM (5 5). This method is a non-asymptotical one and it 
defines the solution of the nonlinear equation of motion for arbitrary oscillation 
amplitude. 

Lastly, utilisation of the OM for many-dimensional systems is considered in § 6 and 
the energy spectra of coupled quartic anharmonic oscillators and the hydrogen atom 
in the uniform magnetic field are calculated. 

2. Modification of the operator method 

We shall not consider in detail the original formulation of the OM described in the 
paper of Feranchuk and Komafov (1982a) which we shall refer to as FK. According 
to this paper, the Hamiltonian X ( x ,  6, A )  of the arbitrary system must be put in second 
quantised form through the introduction of creation a+ and annihilation a operators 

x = ( a  +a++2u)/(2w)1/2,  6 = i(w/2)1/2(a+ - a ) ,  [a, a’] = 1 (1) 

with arbitryy parameters w and U. 
Then X ( a ,  a+, A )  is divided into two parts 

&(U, U+,  A )  = &o(fi, w, U, A ) +  ?(a+, a, w, U, A ) ,  (2) 

where &o contains all terms which commute with the particle number operator n̂  = aca, 
consequently its eigenvalues and eigenfunctions are easily calculated. It was shown 
that perturbation theory with respect to the operator ? in the QAO problem leads to 
rapidly convergent series for all eigenvalues E,(,+) and coupling constant A. The 
parameters w ,  and U, were chosen by FK in such a way that E ~ o ’ ( w f l u , )  was a minimum, 
where E ~ ” ( w , u , )  was given by the equations 

However, this form of the OM is suitable for discrete spectrum states only and is 
inapplicable for a Hamiltonian where the bound states disappear for the critical value 
A, or for a description of the continuous spectrum states. Therefore let us introduce 
a modification of the oy which permits us to consider the pointed cases too. 

If the Hamiltonian X has no bound states for A < Act  then it proves that equation 
(3) for the ‘parameters U:”, U!,’’ has any real-valued solution for A <A:’’ (see the 
problem described later). The value A:’ gives a zeroth-order approximation for critical 
value A,. However, using perturbation theory with respect to V( wi” ,  U?’) in the form 
described by FK doesn’t permit us to find A, exactly because equation (3) afid parameters 
U;”, w?’ are invariable in higher orders. A new scheme for calculation of the parameters 
U,, w, is based on the foll2wing arguments. If the zeroth-approximation :state vector 
In) satisfies the condition Vln) = 0, it would be an exact eigenfunction of Z. As in the 
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definition the operator G changes the particle number n, it may be represented as follows 

G = U + v * r O ’ ( o , U , n * ) + U + 2 v * : o ’ ( W , U , n * ) + H C +  . . . .  (4) 

Now let us choose the parameters w p ’ ,  up’ such a way that the condition Gln)=O 
holds as accurately as possible. This leads to the following zeroth-order equations 

v * y y W ,  U, n) = G:”(o, U, n) = 0, ( 5 )  

which define U‘,’’ and U‘,’’. It may be easily verified that equations (3) and ( 5 )  are 
equivalent to each other for the ground state ( n  = 0). 

In order to find more precise values w‘,‘’ and U!,“ one can use the first-order 
correction to the Hamiltonian eigenfunction. Then the condition GI n) = 0 transforms 
as 

The operator Cl has a form analogous to (4): 

GI 4:’)) = Q, ( 0, U )  I n) = [ 0 + G( 2’ - € k”) - 1  P-1 n ). (6) 

G ~ ( W , U ) ” + v * ‘ , ’ ’ ( w , U , n * ) + U + 2 ~ ~ ’ ’ ( w , u , n * ) + H C +  . . .  
and one can find the first-order equations for the parameters U‘,’’ and U‘,’’ 

u y ( w ,  U, n) = p ( w ,  U, n) = 0. (7) 

It is evident that analogous equations may be built in any order with respect to k 

go and V were written in FK 

Let U: use this form of the OM in two problems. In the case of QAO the operators 

2 -1 - 4(w + l/w)(2n* + 1 )  +(3A/4w2)( 1 +2n* +2n*2), 

G= a( l / w  - o ) ( a ” +  a 2 )  + (h/4w2)[6(a2+ ai-2) + a4+ ~ + ~ + 4 ( a + a ~  + ~ + ~ a ) ] .  (8)  
Zeroth-order operators v*\O’ and are equal to 

;CO’ 0, u = o ,  v*y’=a( l / w  - W )  + A / w 2 ( i  + n*). 

and the equation for U‘,’’ is 

w 3  - w -2A(2n +3)  = 0. (9) 
The variational principle (3) used by FK leads to the different equation which coincides 
with (9) only for n = 0, 1. 

Table 1 compares the second excited state energy €$‘‘L, calculated in zeroth 
approximation with U‘,’’ from equation (9), and second-order approximation E y’ + Ei2’ 
found by FK by means of (3). These results show that the modification considered 
improves the precision of the OM calculations. 

Table 1. Energy levels of the anharmonic oscillator. 

E 
A 

0.1 1 .o 10 

E,  (accurate) 3.138 62 5.179 29 10.3471 
3.13963 5.187 5 1  10.37 16 

E% (9) 3.139 34 5.177 32 10.3371 
Eo (accurate) 0.559 146 0.803 77 1 1.504 97 
EA’’+ E F )  (FK) 0.561 172 0.805 734 1.509 35 
EIp’+E$% (10) 0.559 199 0.804 351 1.507 21 

€IO’+ E‘2’ (FK)  
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It may be noticed that the ground-state energy Eo is also calculated more precisely 
in comparison with FK, if one takes into account the first-order equations ( 7 ) .  In the 
case considered these equations are 

m 3  - w -6A -$A ( w 3  - w - 14A)/(w3 + W  + 15A) = O  (10) 

and the values E:,, +E&., and E r ’ + E i 2 ’  are also listed in table 1. 

screened Coulomb potential: 
Let us now consider the calculation of the ground-state energy for a particle in the 

xei tp2-e-Ar/r .  (11)  
The bound eigenstates of such a Hamiltonian disappear when A > A c  and we shall find 
A, by means of the OM. Komarov and Romanova (1982) showed that the most 
convenient presentation of the Hamiltonian with Coulomb singularity of the potential 
is given by the following coordinate transformation 

x A  = 6 $ ( c r h ) s ! t f ,  r = t T t s ,  s, t = 1,2, 

where uA are the Pauli matrices; 5, are the complex-valued variables which form a 
spinor. Using the second quantised form 

one can build the following operator, put in the normal form 

2 = r ( f i  - E )  = i w ( 2  - M’ + N - M )  - i (E/2w)(2 + M +  + N + M )  

- ( I  +p)-’exp{-[pLl(l + p ) I M + ) e x p { - ~ l n ( l  + p ) )  

XexPI - bU/( 1 + P)IMl, 

M = a&,, N = a,+a, + b:bs, p = A/2w. 

Then the eigenfunctions of the Hamiltonian ( 1  1)  are such solutions of the equation 

2lk) = El$)  (12) 
which correspond to E = 0. 

Let us use the OM to solve equation (12). The zeroth-order operator 2,, is 

and the perturbation operator is 

A (: 23 2,=- -+- ( M + M ’ )  

“ 1  
+ ( l + p ) - 2  1 7 ( - r p ) 2 s ( M + Y  exp[-N ln(1 + p ) J M 5 .  

s = o  (s!) 
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In zeroth approximation 

Id0’) = IO), a,10) = b,10) = 0, 

and values E r ’ ,  up’ are defined by the following equations 

~ f ’ = 2 A - 1 / ( 1  +p)’=O,  A = - ! E  f U ,  

[ - B + p f ( 1 + p ) 3 ] ~  +IO) = 0, B =+U + $ E / w .  

One can find Ai0’ from the condition E:’=O, which leads to a rough estimation of 
AT’= 1, essentially different from the value calculated, for example, by Sergeev and 
Sherstiuk (1982). 

Let us now take into account the second-order correction to E~ and the first-order 
correction to the state vector in order to build the concrete form of general equations 
(7 )  in the case considered. After simple but unwieldy algebraic transformation the 
equations may be written as follows: 

2A- ( 1  +p))-’=2[B - p (  1 +p)-’I2[2A +( 1 + p ) - * -  ( 1  +2p2)(  1 +P)-~]-’  

1 2 n  n + l  +- ( l + p , ) 4 z 2 ( 6 )  2An+z,’ 

B(1 +3p2(1 + ~ ) - ~ [ 4 A + ( l  +p)-’-(l  +6p2+3p4)(1  +p)-6]-1} 

n!(n + I ) !  
z,=(1 +p)-’-(l  +p)- ’ (n+’)  i PLZS 

s = o  (s!)’(n-s)!(n+l -S I ! *  

It was discussed above, that in the considered modification of the OM, the parameter 
m i ’ ’  from equation (13) is not equal to up’. Table 2 lists the calculation results for 
function Eo(A),  found in zeroth and second approximations. One can see that the 
considered scheme of the OM gives rapidly convergent series for A,. 

Use of the OM for an approximate description of continuous spectrum wave- 
functions is also of great interest. It proves that one can solve this problem using the 
analytical continuation of the parameters w and n to the complex-vahed plane. In 
order to explain the main idea of such a calculation, let us consider the following 
simple Hamiltonian: 

This Hamiltonian possesses the continuous spectrum only. 

[tw(2u+u + 1 - ( U + ) ’ -  a’) - (  1 /44(2u+u  + 1 +(u+I2 +a2)  - E] /+>  = 0, 

Direct use of the OM leads to the equation 

Table 2. Ground-state energy in the screened Coulomb potential (A,  = 1.19 (Sergeev 1982)). 

A 
EO 0 0.6 I .o 1.15 1.195 

- - I EA0)I 0.5 0.103 0 
/ E ~ a ’ + E ~ 2 ) l  0.5 0.1 16 0.013 0.0017 0 
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and one can obtain the following results 

I+!?) = In, U"), 0, = 1, E ,  = i( n ++). (15) 

The values E ,  from ( 1  5 )  will coincide with the real-valued energy E for the state vector 
\4io'}, corresponding to the complex-valued number n = -iE -4. In order to continue 
I$?') to the complex-valued n, one can use the following equation 

a:ln,w>=(n+l)"21n+l,w), (16) 

which defines the matrix element of the creation operator when n is the positive integer. 
But (16) may be also solved for complex-valued n in the form of the following corstour 
integral 

where T(z) is the gamma function; the vacuum state is defined as follows 

aJO, 0) = 0 

and the contour C in the complex-valued plane t is shown in figure 1. 

Figure 1. Countour of the integration in equation (20) 

According to (15), the vacuum state 10, w )  and the operators a, and a: correspond 
to pure imaginary frequency w. In order to  define these values let us start from the 
Hamiltonian of the usual oscillator with frequency w = 1 

&= f( $2 +P). 
The second quantised form and the ground state of 5@ are well known 

a = (1 /J2) ( f  + i t ) ,  a + = ( 1 / JZ) ( 9 - it), 

It proves that one can transform the values in (18) to arbitrary frequency w by means 
of the following operator equations 

%= a+a  +f, a10) = 0. 
(18) 

a, = Z ( w ,  l ) a k ' ( o ,  l ) ,  IO, = &U, l)lO>, 

A,. = a i . ,  
where the normal form of the operator k is 

k ( w ,  U ' )  = exp(cp,A;,) exp[cp2(N,.+f)1 exp(-cp,A,,) 
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with 

w ’ - w  2(w0‘)1/2 
( w  + w ’ )  ’ ( p 2  = In Nu. = a:.a,,. 

2( w + U ’ ) ’  
PI= 

Equation (19) permits us to build the sought analytical continuation to the complex- 
valued w. 

Let us substitute equation (19) with w = i in (17), put n = -iE -4 and transform 
all operators in the normal form. Then one can find the following expression for the 
continuous spectrum state vector, corresponding to energy E 

1 
2 IT1  

14E)=-[r(-iE In t + t’)] exp(hta+)/O).  (20) 

It is easy to ensure that equation (20) gives the operator integral representation of the 
confluent hypergeometric function which is the exact eigenfunction of the Hamiltonian 
(14). 

3. Convergence of the OM 

The results described in the previous section and in the following ones demonstrate 
a rapid convergence of the series obtained on the basis of the OM. This convergence 
is observed for all eigenstates and in the whole range of the Hamiltonian parameters 
including the most complicated intermediate coupling regime. The algorithm of the 
calculation of the high-order corrections is sufficiently simple although this expansion 
is not connected with any algebraic parameter. Even zeroth approximation defines 
eigenvalues, as a rule, with a relative accuracy to order of one percent and sometimes 
it gives a somewhat unexpected accuracy (see, for example, 9 9  4-5). 

Strict analysis of the OM convergence is apparently a complicated mathematical 
problem and its solution falls outside the framework of this article. Therefore we 
shall consider several simple arguments which don’t give a strict proof but do explain 
to some extent the convergence of the OM. 

Firstly let us discuss shortly a simple exhibit built by Fernandez and Castro (1982). 
They considered the following Hamiltonian 

Its eigenvalues are obvious and exist for any A > - 5  
E, = ( n  +f)( 1 +2A)”*. 

However, if one calculates E,  by means of canonical perturbation theory (cn) as 
regards the operator ha’, the series in terms of powers of A with radius of convergence 
( A I  < f  will be obtained. It is conditioned by the branch point of the function & ( A )  
in the complex-valued plane. 

Now let us put the Hamiltonian (21) into the second quantised form by means of 
the ( 1 )  with U = 0 

( (a ’ ) ’+a’)+- ;(’ - L2’+w)(a+a ++I. 

Use of the OM consists of two essential points: (a) the introduction all terms commuted 
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with the operator n̂  = a + a  to the zeroth-order Hamiltonian, and (b) the choice of the 
parameter w in order to obtain the best zeroth approximation. One can investigate 
the role of each of these points using the Hamiltonian (22). Firstly let us choose the 
frequency w arbitrarily and put it equal to 1. Then the zeroth-order Hamiltonian is 

&,=(l + A ) ( ; + + )  

and the perturbation operator is 

2 - _  - ; A ( ( a + ) ' + a 2 ) .  

Then it is obviously that the perturbation theory in respect of 2, gives the oscillating 
series in terms of powers of the parameter 

[ = A 2 / ( 1  + A ) 2  

and this series is convergent for all -4 < A < co. 
Thus, point (a) leads to the definite value of expansion parameter [ for any 

amplitude of the perturbation operator. It is conditioned by the appearance of the 
parameter A in the denominator of terms of the OM series due to the propagator 
(&', -E~'')- ' .  This result is general and essential for the OM convergence in any 
problem. Use of point (b) of the OM will lead to the accurate eigenvalues of the 
considered Hamiltonian (22) if one chooses the parameter w in accordance with 
equations ( 5 ) .  This result has a special character, of course, but we shall see later that 
the particular choice of w in the general case improves essentially the convergence of 
the OM series too because many of its terms become zero. 

Let us now consider the convergence of the OM series for the problem of the 
ground-state energy of the QAO. According to FK the zeroth-order Hamiltonian with 
arbitrary parameter w is 

k,=;( w+1)(2n^+1)+7(4n '+2(a ' )2a2+l ) ,  3A 
w 4w 

and the perturbation operator is 

& , - _  - A( l / w  - w ) ( ( a + ) 2  + a 2 )  

+ ( A / ~ ~ ' ) ( ( u ' ) ~ + u ~  + 4 ( ~ + ) ~ a  +4aca3 +6(~ ' ) '  + 6 a 2 )  

and differs from the analogous operator Xi in the CPT due to the absence of the term 

(3A/4w2)(4n* +2(a+) 'a2+  1 )  

introduced in the operator 9,. As a result the propagator ( 2, - EAo))-', which defines 
the high-order corrections of the OM series, acts at an arbitrary intermediate n-quantum 
state as follows 

1 
In). 

( 0 )  - I  2 w 2  
' " ) = n w ( w 2 + 1 )  + 3 A ( n  + 1 )  

It differs from the CPT propagator by the coupling constant A and a higher degree of 
n in the denominator. 
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The action of the operator X, at the same state vector In) is easily calculated 

and contains the vertices corresponding to the creation or annihilation of two or four 
quanta. In order to simplify further consideration, let us introduce the graph notion 
for terms of the OM series which are calculated by means of the perturbation theory 
in respect of the operator (24 ) .  One can represent these terms using the elementary 
two- or four-quantum graphs, drawn in figure 2 ( a ) .  For example, figures 2 ( b ) - ( d )  
show all graphs of the second, third and fourth order. Analytical expressions are 
correlated with graphs in conformity with the following rules. 

(i)  To each vertex corresponds the factor 

1 
- - [ w ( w * -  1 ) - 2 ~ ( 2 n  + 3 ) ] [ ( n  + l ) ( n  +2)] ' / '  

4w2 

for a two-quantum vertex, and 

A ( n  + 4 ) !  ' I 2  -- 
402(  n !  ) 

for a four-quantum one. 

on the graph by the horizontal straight line drawn from this vertex. 

n, which is equal to the number of lines between these vertexes. 

formula 

(ii) The number n for the definite vertex is equal to the quantity of lines crossed 

(iii) The transition between two vertices corresponds with the propagator ( 2 3 )  with 

For example, the first graph in figure 2( b )  corresponds to the following analytical 

3 A[w(w2- 1 )  -6A][w(w2- 1 )  - 14A] 
16w2 [ w ( w 2 + l ) + 9 A ] [ w ( w 2 + l ) + 1 5 A ]  ' 

(d 1 

Figure 2. Graph presentation of the perturbation series for the QAO problem. 
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Let us now compare the behaviour of a sequence of graphs in the OM series and 
an analogous one in the CFT, when the number k of graph vertices is large ( k  >> 1). 
It is well known (see, for example, the paper of Dolgov and Popov (1978)) that the 
CPT series is asymptotic and there are such sequences in it which diverge as k !  for 
k >> 1 .  Figure 3 ( a )  shows the graph of the 2k-order term of one of such sequences. 

+ . I  

lbl 

Figure 3. Sequences of graphs for the most divergent series in the CPT 

In the OM series this graph is described by the following expression 

I A Z k  1 ( 4 k ) ! 4 k [ w ( w 2  + 1 )  + 3 A ( 4 k  + l ) ]  
w 2  22k+1 (IIL=, 4 m [ w ( w 2 + 1 )  + 3 A ( 4 m  +1)])2' k -  

Simple algebraic transformation leads to the estimation 

l lk i  < T p  ( I I k = ,  4 m 3 A ( 4 m  + 1))2 
A Z k  1 ( 4 k ) ! 4 k 3 A ( 4 k  + 1) 

2 4 A k ( k + f )  ( 4 k ) ! r 2 ( ; )  48A T*(;) 1 - =--- 
(k!)21'2(k +;) w 2  ( 2 ~ ) ~ ' ~  ( 3 6 ) k '  22 I  o k 3 2 k  

- 

if k >> 1. 
The sequence of graphs considered converges absolutely as the geometric pro- 

gression with denominator q = ( 3 6 ) - ' .  At the same time this graph in the CPT doesn't 
contain the factor [ T ( k  + $ ) I 2  in the denominator and diverges at - ( k ! ) * .  

We note that analogous investigation of the sequence of graphs from figure 3 ( b )  
shows that it converges as the geometric progression with denominator q = .$. Unfortu- 
nately, we can't consider an infinite number of graphs for QAO but any real sequence 
of graphs proves to be absolutely converged and this apparently shows the absolute 
convergence of the whole of the OM series for an arbitrary parameter w. 

Now let us discuss the significance of choice of the optimal frequency W .  It is 
evident that if one defines w by means of ( 5 )  it will lead to the disappearance of all 
graphs which begin or end with a two-quantum vertex. It means actually that we fulfil 
the partial summation of these graphs and take them into account in the zeroth-order 
approximation. Figure 2 shows that all graphs with odd numbers of vertices and 
about half of second- and fourth-order graphs will be equal to zero for the QAO problem 
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if the parameter w is chosen on the basis of (5). It is essential that use of the frequency 
permits us to find the accurate asymptotical behaviour when A >> 1 (see our paper FK). 
The calculation of such dependence requires us to sum an infinite number of terms of 
the c m  series. 

4. Integrals of motion 

The OM permits us to take into account naturally the accurate laws of conservation in 
calculating the eigenvalues and eigenstates of the Hamiltonian. It is essential for 
such systems where integrals of motion qualitatively change the character of the energy 
spectrum. In many papers (see, for example, Bogoliubov (1950)) this problem was 
solved in such a way that eigenvalues of the system had been calculated approximately 
but the law of conservation had also been taken into account exactly in each approxima- 
tion order. The introduction of the exact law of conservation to the approximate 
calculation scheme had essentially complicated all the calculations. 

In contradiction to this approach the OM enables us to calculate the energy and to 
take into account the laws of conservation with the same accuracy and without any 
essential change of the calculation scheme. Feranchuk and Komarov (1982) considered 
the calculation of the Hamiltonian eigenvalues for the potential with two symmetrical 
minimums when the conservation of parity removed the degeneracy of the energy 
levels. In this paper we consider the more complicated case of the periodical potential 
when the energy spectrum has a zone structure. In particular, we use the OM for the 
potential 

V(x) = h cos 2x, V(x + 7r) = V(x), 

because in this case the Schrodinger equation is reduced to the Mathieu equation and 
this permits us to compare our results with well known numerical solutions. The 
corresponding equation for the particle with 0.5 mass is 

&?,,k E ( -d2/dX2 + h COS 2X)*,,k(X) = E,,(k)*,,k(X). (25) 

We note that if one changes 9 + x ;  x + t in equation (25) this equation will describe 
the problem of parametric classical oscillations. Therefore the method considered in 
the present work for investigation of the quantum system can also be used in the theory 
of oscillations of mechanical systems. 

In accordance with the Bloch theorem, eigenfunctions of the Hamiltonian (25) are 
at the same time the eigenfunctions of the operator ? of the wavefunction translation 
on the potential period 

* 
T*nk(X) E *nk(x +r)=exp(ikr)*nk(x) .  (26) 

As a result the particle energy spectrum has a zone structure E + E , , ( k ) ,  where n is 
the zone number and k is the quasimomentum. 

Now let us introduce the projection operator 9, which transforms the arbitrary 
vector to the state with a definite quasimomentum value. One can easily verify that 
this operator is 

In order to find the common solution of (25) and (26) one can calculate the state 
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vector 1 $) which satisfies the following equation 

91 I,!/) E (& - E ,  (k))@kl$) = 0, 

and then the unknown state vector is 

We shall solve equation (28) by means of the OM. Let us put the operator 2 in second 
quantised form using the equation (1 )  with U = 0 and transform it to the normal form 

9 = c exp[irmk - : w r 2 m 2  + (w/2) 1 /2rma+]  
m 

m = - m  

x {  - f ~ [ a + ~ + [ a  +(w/2)””m.rr1~-2u+(a +(w/2)’/2m.rr)- 11 

- E,(  k) - (-1)“fh exp(- l / w )  

x [exp( i (  21 w ) ‘ l 2 a  +) exp(i( 2/ w ) ‘ l 2 a )  

+ e~p(- i (2 /w)’ /~a’ )  exp( - i ( 2 / ~ ) ’ / ~ u ) ] }  exp((w/2)’/’rma). 

The operator go of zeroth-order approximation is defined by that part of the 
opeiator 9 which commutes with the particle number operator a+a. The eigenstate 
of To is equal to the vector In) and the eigenvalue is defined by the following equation 

where L,” is the associated Laguerre polynomial; the number n defines the number of 
the zone and k is the quasimomentum eigenvalue. 

Let us choose the parayeter w n k  from condition ( 5 ) ,  that is put equal to zero the 
term -a+’ in the operator 2. This condition leads to the equation which we write for 
the ground-energy zone corresponding to the quantum number n = 0 

0, = exp(-twOk.rr2m2 +ikm). 

The common solution of (3  1 )  and (30) with n = 0 defines the zeroth approximation of 
the particle energy spectrum E r ’ (  k) in the ground zone. In considering the approxima- 
tion, the wavefunction corresponding to these energy levels is 

m 

!,bok = c exp(-iwokr2m2 +ikm +i.rrm(wOk/2)”’a+)~~).  
m = - m  
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Thus, the calculation of the energy zone spectrum is reduced to the solution of two 
algebraic transcendental equations which can be easily programmed. We note that 
the sums in these equations converge very rapidly and one can calculate them using 
a desk calculator. 

Table 3 compares the values EP’(0) and ErO’(0) calculated by us on the basis of 
the OM zeroth approximation with the known numerical solutions of the Mathieu 
equation described, for example, by McLachlan (1949). Here EbO’(0) and E‘,’’(O) are 
the energy levels of zeroth and first zones with quasimomentum k = 0. These levels 
correspond to the periodical solution of the Mathieu equation. This table shows that 
the OM zeroth approximation gives very high accuracy (-0.0lO/0) and a sufficiently 
simple calculation of the algorithm. Also the regular character of the OM permits us 
t: improve this accuracy by means of perturbation theory as regards the operator 
2-  To. As an example we write out the formula for the value Er’ (0 )  (the first-order 
correction for energy of any level equals zero) 

m 

In conclusion we note that the method considered may be very effective for the 
three-dimensional periodic potential due to essential decreasing of calculation time in 
comparison with direct solution of the Schrodinger equation. 

Table 3. Eigenvalues of the Mathieu equation. 

- E  
h 

I O  20 30 40 50 

- E o  (acc.) 5.7916 13.937 22.5 I3 31.313 40.257 
5.8002 13.933 22.5 I O  31.31 1 40.254 

- E ,  (acc.) - 1.8582 2.3991 8.101 I 14.49 I 21.315 
-2.0153 2.3606 8.0806 14.475 21.301 - E ( o )  

5. New approach to the theory of nonlinear oscillations of Hamiltonian systems 

At present the theory of nonlinear oscillations is an independent section of mathematical 
physics which has important applications in mechanics, radio techniques and astronomy. 
In spite of the great progress of computors the analytical theory of such systems remains 
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as before because it is necessary for qualitative analysis of the systems and for the 
development of the effective algorithms of numerical solutions. 

The theory of nonlinear oscillations is as a rule reduced to the construction of the 
periodical solution of the following equation 

x + x + A f (  X, x ) = 0, 1 = dx/dt. (32) 

Analytical methods known at present are based on expanding the solution x ( f ,  A )  
of (32) in a power series of A which proves to be asymptotic and doesn’t permit one 
to analyse the systems in the region of sufficiently large A and to develop the convergent 
algorithm of the numerical solution (see, for example, the work of Hayashi (1964)). 

We suggest a new approach to the analytical theory of nonlinear oscillations of 
Hamiltonian systems based on the use of the OM for approximate solutions of the 
‘conjugate’ Schrodinger equation. As will be shown for the real system of the type 
considered, our method permits one to find the solution of (32) with an accuracy of 
some percent in the whole range of 0 s A < CO even in zeroth approximation. The 
higher approximations are constructed by the usual simple method and give a uniformly 
convergent series for x (  t ,  A )  for any 0 s A < 03. The results of this paragraph demon- 
strate the fact that the OM gives a good approximation not only for eigenvalues, but 
also for eigenfunctions. 

The scheme of calculations in the method considered is as follows. Let us suppose 
that the physical system described by (32) is Hamiltonian; i.e. this equation can be 
obtained from the Lagrange variational principle. Then one can as usual construct 
the Hamiltonian of such nonlinear classical system and introduce the ‘conjugate’ 
quantum system by means of the formal parameter h and substitute instead of x and 
p the corresponding operators. Eigenfunctions and eigenvectors of the Hamiltonian 
obtained are calculated by means of the OM being applied for any A. In the last stage 
of the calculation we fulfil the transition to the classical limit h + 0 and find the law 
of motion x(f, A ) .  It is essential that this transition is reduced to the solution of the 
algebraic equation the general structure of which doesn’t depend on the real potential 
form. Thus, we use the quantum mechanical approach for analysis of classical system 
just as the inverse consideration is usually used. 

Let us introduce the main features of our method on the example of anharmonic 
oscillator which permits us to compare our results with an accurate analytical theory. 
This mechanical system is described by the following equation 

(33) x + x  +4Ax3 = 0. 

This equation of motion corresponds to the ‘conjugate’ quantum system with 
Hamiltonian 

% = f( p^* +iz) + Ax^4, p  ̂ = -ih(d/dx), 

whose eigenvalues and eigenstates were found in 0 2: 

&?’=h{$w, +.(l/wn)](2n +1)+(3Ah/4w~)( I  +2n +2n2)}, 

w’, -U,, -2Ah(2n +3) = 0. 

(34) 

where we left parameter h in the equation and w, is defined by the following equation 

(35) 

Now let us find the initial equation (33) solution which is the quasiclassical limit 
of the ‘conjugate’ quantum problem. In particular, the period of the classical motion 
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is defined by the well known expression 

a =  277/ T = ( I / h ) ( a ~ , / d n ) ;  

h+0,  n + m ,  hn = p = const, (36 )  

which leads, in the approximation considered, to the following result 

w 7 w 2 - 3  a=------ 
2 3 w 2 -  1 

and w ( p )  is the solution of the equation 

W’ - o -4Ap = 0, (37 )  

where parameter p is connected with the total energy E 

E = B P [ 7 w ( P ) + ( l / w ( P ) ) I .  (38 )  

The system of algebraic equations (36)-(38)  defines the zeroth approximation for 
period of the classical anharmonic oscillator in dependence on the total energy 

@ ( E )  =[${I +[ I  +$(32AE + 1)]1’2}]”2, 

4773w2- 1 
T(E)=--  

w 7 w 2 - 3 ’  (39)  

It is well known, that the accurate expression of the function T ( E )  is defined by 
the full elliptic integral 

4 
T ( E ) = = K ( Y ) ,  U = (1  + 16AE)’” 

J U  

and table 4 shows that simple formula (39 )  gives a good approximation of the function 
T ( E )  in the whole range of changing parameter A and total oscillator energy E. 

Table 4. The particle oscillation period and the law of motion in the potential f x ’  + Ax4. 

T 
AE ( A  E)”4 T, 

0. I 0.5 1 .o I O  AE >> 1 

T ( E )  (acc.) 5.21 1 98 4.004 31 3.473 06 2.046 04 3.708 15 
T L E )  5.21 1 95 4.004 25 3.473 02 2.046 05 3.708 20 

X 

X( T )  (acc.) 1 0.923 0.596 0.321 0.176 
X ( T )  (4) 1.017 0.905 0.551 0.293 0.164 
X i b )  1.001 0.928 0.577 0.312 0.171 

One can calculate the function T ( E )  more precisely taking into account the 
second-order corrections to energy levels E,. The calculation will be essentially sim- 
plified if we choose the parameter w ,  in this approximation from the condition that 
the second-order correction E ? )  would be equal to zero in the limit n + CO, h+ 0. This 
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condition leads to the equation for U ( @ ) :  

w ( w 2  + 1)  +6Ap 

3Ap[w(w2- 1)-4Ap] 
w ( w 2 +  1 )  +6AP 

) = O  
and the oscillator energy is defined by the same equation (34). Table 4 shows the 
period T , ( E )  calculated by meamof  (40) and it proves that T2 and T coincide with 
very high accuracy. 

Now consider the calculation of classical law of motion. The solution x( t )  of (32) 
we find as the quasiclassical limit ( h  + 0, n + 00, h n  = p )  of the average value of an 
operator 2 on some state vector I $ ( t ) ) ,  that is 

where I+,) and E ,  are the accurate eigenfunctions and eigenvalues of Hamiltonian of 
the ‘conjugate’ quantum system and c, are’the coefficients defining the initial wave 
packet. 

The classical trajectory of particle corresponds to such a wave packet in which thc 
coefficients c, have a sharp maximum near the value no >> 1 defined by the conditions 

E,= E, noh = p. 

Therefore the law of motion which does not depend on the wave packet form is 

m 

x ( t ) =  1 ( $ & , + k l i l $ & , )  exp[ak(t-fO)l, 
k = - s  

This function contains two arbitrary constants E and to but later we shall put to = 0. 
Now use the OM approximate expressions for the state vectors I$,) = In, U , )  and 

energy levels E,  = E ? ) .  It is necessary to take into account that the function In, 0,) 
and I m, U,) are non-orthogonal because they correspond to different frequencies. For 
this reason (42) is transformed as follows 

Both sums in (43) can be calculated analytically in the limit no + 00. This calculation 
does not depend on the real form of the energy spectrum E ,  and it is fulfilled most 
compactly when using the following operator equality (see (19)) 

exp[t(w, w r ) A ( w r ) l a ( w f )  exp[-t(w, w ’ ) A ( w ! ) ]  = a ( w ) ;  

t ( w ,  U ‘ )  =$  I n ( o ’ / w ) ,  A ( ~ ’ ) = [ a + ( ~ ’ ) ] ~ - [ a ( w ’ ) ] * ,  

where a ( w )  is the annihilation operator attributed to the state vector with frequency 
w. This equality permits us to calculate an arbitrary matrix element in (43) and to find 
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the following expression 

if ( k  - s )  is an even integer, 
if ( k  - s) is an odd integer. ( n  + k ,  w,+kln +s, w,),,,I = { f ( k - s ) / 2 ( y k )  

Here BV(x)  is the Bessel function; 

Y = ( P / 4 w ( P ) ) ( W P ) / a P )  
and the parameter p was defined above. 

of the Bessel function 
In order to calculate the sums over all k one has to use the integral presentation 

B ~ ~ Y k ) = I S ~ ~ ~ c o s ( y k s i n ~ - k ~ ) .  T o  

As a result we find the law of motion x ( t )  in the following form: 

x ( t )  = ( 2 P / w ) ) ” 2  cos[Mt)l ,  (44) 

where p(t) is defined by the algebraic equation 

n t+ys incp( t ) - fp( t )=O.  (45) 

We see, that equations (44) and (45) have a universal form which does not depend 
on the real potential type. It is natural that these equations give the same results as 
any asymptotic method if the nonlinear parameter A << 1. But table 4 shows that our 
method gives the solution which coincides sufficiently closely with the accurate classical 
solution even in the most unfavourable case AE >> 1. The coincidence is essentially 
improved when the OM corrections to the energies and wavefunctions of steady states 
are taken into account 

For example, the calculation of such corrections for the anharmonic oscillator in the 
AE >> 1 case leads to the following law of motion 

xl(t)=(2P/R(P))1/2&(188~~~i2t+13 C O S ~ ~ ~ ~ - C O S ~ R ~ ) ,  

which is also presented in table 4. 
Thus the results obtained in this paragraph show that our approach permits us to 

reduce the solution of a nonlinear classical problem to the solution of a linear quantum 
problem. 

6. Description of many-dimensional systems 

In the preceding sections we have demonstrated the efficiency of the OM for one- 
dimensional systems. However, one could already understand that the general scheme 
of the OM was suitable for systems with any number of degrees of freedom. In order 
to prove the latter affirmation, we investigate two many-dimensional problems. 

Let us first consider the two-dimensional problem of coupled quartic anharmonic 
oscillators investigated numerically by Hioe et al (1978). The most simple form of the 
Hamiltonian of the system is 
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where ylq2 and pl,2 are the coordinate and momentum operators of the particles; A and 
b are the dimensionless parameters of the Hamiltonian. The operator (46) can be put 
in second quantised form through the introduction of creation and annihilation 
operators 

Yl .2  = [1/(2wl,2)I/21(al,2 +a:,,), P1,2 = i(w,2W2(aT,2- 4,’) (47) 

with arbitrary parameters w , ,2. 

parts in conformity with the OM scheme 
Let us put this Hamiltonian in the normal form. Then it can be divided into two 

Y?= Y?o+22, 

&o= c [;( w ,  +$)( 
u = I , 2  

(1  +2a:a,)( 1 +2a:a , ) ,  (48) + 7 ( 1 + 2 a : a ,  +2(u:a”)*) +- 1 A b  
3A 

4w Y 2 W I W 2  

Ab +- [( 1 + 2a :a,)( a:’ + a:) + ( 1 + 2a:a2)( a :’ + a:) 
2 W l W 2  

+ a yu;2 + a :2a: + a:2a: + a:a:1. (49) 
The Hamiltonian Y?,, commutes with the particle number operators 
therefore the zeroth-order approximation for eigenstates is given by the equations 

= u ~ ~ u , , ~  and 

n*,,,ln,n2) = nl,2lnIn2), ( 5 0 ~ )  
when n ,  and n, are both odd or both even numbers and 

I+”,fl,) = Inln2) (50b) 
in the opposite case. 

values 
Then one can find the following approximate equation for the Hamiltonian eigen- 

E(n9)n2 = U=,,’ c [ ;( w ,  +$)( n, +;) 
( 2 n ,  + 1)(2n, + 1). +:( 1 +2n, +2n2,) +- 1 Ab 

3A 
4 w  Y 2 0  I w2 

The parameters w\:i:re defined in such a way that the parts proportional to a:’ and 
a i 2  in the operator XI would be equal to zero. These conditions lead to the following 
equations 
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Equations (5 1) and (52 )  permit us to calculate EL:),,, for any energy level and parameters 
A and b. Table 5 shows some of these calculation results. It is clear that the zeroth-order 
approximation doesn’t give very high precision, but the simplicity of the formulae and 
their applicability in the whole range of the Hamiltonian parameters is of great interest. 

Table 5. Energy levels of the coupled quartic anharmonic oscillators. 

0.1 
h 

I .o I O  

b 
E 1 - 1  1 -1 - 1  

E,, (ace.) 1.1502 1.0813 1.7242 1.4438 2.5577 
E$,’ 1.1527 1.0855 1.5658 1.492 1 2.7707 
E%) + E(2’ 00 I .  1502 1.0813 1.725 1 1.4444 2.5592 
E , ,  (acc.1 2.4143 2.2120 3.8304 3.0666 5.4881 

2.4196 2.2317 3.8357 3.1053 5.9247 E(0’  
10 

In order to calculat5eigenvalues Efl i f12  more precisely, one can use the perturbation 
theory with respect to XI. Corresponding formulae in the case of the ground state are 

I$;)) = -(go- E,)-’k,lO), alJO) = a210) = 0, 

EL2’= -(0lk,(ko- Eo)-lk1/0). 

The perturbation theory precision is essentially increased if the value EbO’+Eb2’ is 
calculated without the zeroth-order parameters w!:;, but with arbitrary w , , ~ .  Then the 
equationslfor w l , 2  are found from the condition that parts proportional to a:: in the 
operator %$’I should be equal to zero. The operator X\’) is defined by the formula ( 6 )  

%l) /O)  = k, 1 $p) = k, [ 1 - ( k, - E,) - &,]10). 

This scheme leads to the following system of algebraic equations for the ground state 
energy ( n ,  = n2 = 0 ,  wI = w 2  = w )  

1 1 [ ~ ( ~ ’ - 1 ) - 2 A ( 3 + b ) ] ~  Eho’ + EL2) = - [U’ + + A (3 + b)] - - 
2 w 2  4 w 2  w ( w 2  + 1 )  +3A(3  + b )  

3A 0 ~ ( w ~ + l ) + A ( 9 + 6 b - b ’ )  A 2 b 2 w ( ~ ’ + 1 ) + 2 A ( 6 + b )  -- -- 
2 w 2  B - A ~ A  20’ B - A’A 9 

63A 9Ab 
w + -  +-+,, A = - (  5 A) 

2 2w2  2 w  
B = [ w ( w 2  + 1 )  +4A (3 + b)I2, (53)  

W ( W ’  - 1) - 2A ( 3  + b )  -;A[o(w2 - 1 )  - 2A (7 + b)][w(w2 + 1 )  + A  ( 9  + 6 b  - b’)] 

- $ A b [ w ( w 2 -  1)-2A(3 + 5 b ) ] [ w ( w 2 +  1) + 2 A ( 6  + b ) ] / ( B - A ’ A ) .  

Table 5 lists the results obtained by means of equations (53 )  and shows that the OM 

gives a uniformly convergent series for any A and b. 
Let us now consider another many-dimensional problem where simple formulae, 

obtained by means of the OM, are of practical interest, namely the problem of the 
hydrogen atom in a uniform magnetic field of arbitrary magnitude. The Hamiltonian 
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of the system is well known (see, for example, the paper of Simola and Virtamo (1978)). 

(54) 

where I ,  is the z-projection of the angular momentum, the magnetic field B is directed 
along the z-axis and its magnitude is measured in units of Bo, that is 

B = YBo, Bo = ; m e 3 K 3 .  

Introduce annihilation and creation operators in accordance with the rule 

X” = [1/(2wl)1/21(a,  + a : ) ,  v =  1,2, X3 = [1/(2%)”’1(a3 +a:), 01 # W 2 .  

In order to put Hamiltonian (54) in the second quantised form one can use the following 
integral presentation 

and take into account that f2 commutes with 9. The eigenfunctions of the particle 
number operator are used in the zeroth-order approximation of the OM and therefore 
the operators a, and a: have to transform in such a manner that f, would be diagonal 

a ,  = ( b ,  + i b 2 ) / h ,  

I ,  = N- = b:b,- blb2, I?, = b:b, + bib2,  N3 = b:b3. ( 5 5 )  

u2 = (ib,  + b 2 ) / h ,  u3 = b,. 
A A  

Then the Hamiltonian (54) in the normal form is 

X = ( W ,  +$) ( N ,  + 1) (b:  b i  - b,  b2) + yN-  2 

0 d x  
4 

+ -2 ( 2  N3 + 1 - b:2 - b:) - 2 

f l  = -In( x2 + 1 ) ix2 PX’  
cp2 = 2(PX2 + 1)’ QI =-, 

f2 = -ln(@x2 + 1 ), P = W I / W 2 .  

Let us inclupe i? accordance with the OM scheme alllterms, which commute with 
the operators N,, N3, in the zeroth-order Hamiltonian Xo. Then eigenfunctions and 
eigenvalues are defined by the quantum numbers N ,  and N3 and energies of the 
ground state Er+!( N ,  = N3 = 0) and the first odd state E!,’?( N ,  = 0, N3 = 1) are 

( 5 7 )  E‘O’ O+ -I - z(W!  + Y 2 / W ~ )  + ( W , / ~ P ) - ~ ( W I / ~ P  - ln [Jp+(P - 1)i’2], 

EbO_’=&(wl + y 2 / o 1 )  + ( 3 ~ , / 4 P )  

- 2 ( u I / 7 r ) l ’ * ( ~ -  1)-3/2{p(p- l ) - l n [ J P + ( P  - I)~’*]}. ( 5 8 )  
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The parameters wI*  and Pi may be defined in this case both by means of ( 5 )  and 
from the conditions 

dE$ /do , ,  = a E e / d p ,  = 0, 

which lead to the same equations 

[f(z + 1)  In z - z + 112, 

y 2  = w:+ 

&I-=-- , o [ 3 ( ~ + l ) ( ~ 2 -  1)-2(z- 1) '-6z(z+l) In zI2, 
4 ( Z + l y  

977-2 (z - 1) 

(59) 

(60) 

We note that it is more convenient to calculate the functions E'o'( y )  from equations 
(59) and (60) in the parametric form as E'''(z) and y(z).  Table 6 shows a good 
conformity of the results, obtained on the basis of these simple formulae, with known 
results found by more complicated methods. 

1 +8z+z2 I/'z2 - 1 - 22 In z 
Y - @ I -  

* -  [ (z+1)2 

z = [JZ + ( p  - 1)1'2]2. 

Table 6. Energy levels of the hydrogen atom in the uniform magnetic field. 

Y = B I B ,  
E = E - ~  0.15 1 .o 2.5 50 100 

1 %  (acc.1 0.628 I .02 1.38 3.76 4.72 

~ E ~ J + E ~ ? J  0.598 0.995 1.35 3.75 4.72 
IEZP!I (57) 0.562 0.956 1.31 3.60 4.49 

IEL?I (64) 0.629 0.993 0.988 - - 
I E ~ . + E ~ ~ ~ , , ,  0.628 1.02 1.32 - - 
IE,-/ (acc.1 - 0.298 - - 0.476 
I E P ? ~  (58) 0.192 0.279 0.323 0.408 0.455 

In order to improve the energy estimation let us calculate the second-order approxi- 
mation EL?. Unlike the anharmonic oscillator the perturbation operator is not poly- 
nomial in the considered case and E$? contains infinite summation over intermediate 
states. This sum proves to be rapidly convergent and the main contribution is defined 
by four quantum states. In this approximation the correction Er: is 
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y ( k )  mn = lo' 
and its numerical values are also listed in table 6. 

Let us now consider the same problem of the hydrogen atom in the magnetic field 
but using the Hamiltonian (54) when the algebraic structure is essentially simplified. 
Let us use the coordinate transformation introduced by Komarov and Romanova 
(1982) and considered by us already for the Hamiltonian ( 1  1). In these variables the 
Schrodinger equation for the system considered is transformed as follows: 

and the nucleus charge z = E is a part of the eigenvalue. One has to find those solutions 
of (61) which corresponds to E = 1. According to Komarov and Romanova (1982) this 
equation is equivalent to the Schrodinger equation in the real three-dimensional space 
when the function 1,h(5,5~) conforms to zeroth eigenvalue of the following operator 

commuted with Hamiltonian (54) and operator f,. As a consequence, the function 
+( t1 s2) doesn't depend on the angle 

cp =tan-"? - sl)/(sT + (I)]. 

Now we use the operators a: ,  a, and, b,, b: introduced earlier in Hamiltonian ( 1  1). 
Then the zeroth-order Hamiltonian X0 commutes with the operator QY the particle 
number operator and is 

fix = a;a,, As = b:b,. 

The zeroth-order energy E r !  of the ground state (a,iO) = b,10) = 0) is calculated 
from the condition E( ' )  = 1 and the parameter w is defined by means of the above- 
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mentioned scheme. This leads to the following equations 

4 2 -  ~ i y p ! l ~  + y 2 / 0 3  = E = 1, 

3133 

Table 6 shows that formulae (64) give very high precision because the Coulomb 
singularity is taken into account in Hamiltonian (61) exactly. The considered Hamil- 
tonian is a polynomial with respect to a,, b, and calculation of the second-order 
correction is a simple algebraic procedure. These results are also shown in the table 6. 

In conclusion we note that recently Feranchuk et a1 (1984) considered the polaron 
problem on the basis of the OM and showed that this method permitted one to investigate 
in detail the systems with infinite number of degrees of freedom. 
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